Welcome to the eighth annual Formula Hybrid International Competition!

The Formula Hybrid competition celebrates its eighth consecutive year on the track at the New Hampshire Motor Speedway in Loudon, New Hampshire. Founded and hosted by Thayer School of Engineering at Dartmouth, the competition encourages engineering students to take innovative approaches to drivetrains and energy conservation and provides an unparalleled opportunity for hands-on teamwork spanning electrical, mechanical, and computer engineering disciplines.

In a new development for 2014, Formula Hybrid’s OEM Mentor Program offered coaching from automotive professionals. Several teams took advantage of OEM expertise and guidance in project management and technical matters.

Formula Hybrid is made possible by the generous support of many people: our sponsors, judges, event volunteers, the Thayer School of Engineering community, and the New Hampshire Motor Speedway, which has so graciously made this facility available to us. The competition could not go on without this support.

Finally, we commend the student teams who have boldly accepted the Formula Hybrid challenge. These young pioneers are directing their ingenuity and creativity to advancing plug-in hybrid and electric vehicle technologies, which will lead to improved applications in the future.

We are thrilled to have you here and look forward to seeing you again in 2015!

Doug Fraser Amy Keeler
doug@formula-hybrid.org amy@formula-hybrid.org

Formula Hybrid Competition Organizers

Thayer School of Engineering at Dartmouth • 14 Engineering Drive • Hanover, NH 03755 • 603.646.6580 • formula-hybrid.org
Skip Barber has had an amazing career as a driver, as the founder and developer of the largest, most respected racing and high performance driving schools in the world, as the initiator of the first “ladder system” to enable young American drivers to ascend to the top echelons of racing, as president of Lime Rock Park racetrack in Connecticut and as a recognized collector and connoisseur of vintage sports cars.

Skip’s racing career began in 1959, during his senior year at Harvard, when he won his first race. During the mid-1960s he won three consecutive Sports Car Club of America (SCCA) National Championships, and in 1969 and 1970 he won the Formula Ford National Championship, a record only recently equaled. During his amateur and professional career, Skip held 32 track records around the country.

In 1975 Skip founded the Skip Barber Racing School to coach aspiring drivers. The next year he established the Skip Barber Northeast Formula Ford Championship, in which drivers raced identical cars prepared by the same crew. His “all-about-the-driver” concept expanded into four series that are still going strong. The Skip Barber Racing School became the nation’s premier racing school, producing champions in every major American series.

In 1983 Skip and five other racers bought Lime Rock Park. In 1999 he sold his school to concentrate on the track, which he now independently owns.

Skip’s successes have enabled him to indulge in a related passion: his continually evolving and respected collection of recent and vintage sports and racing cars.
Team Data

School: Yale University
Team Name: Bulldogs Racing
Car Name: BR14
Advisor: Dr. Joseph Zinter

Vehicle Specifications

- **Regen Braking**: No
- **Drive Configuration**: Parallel Internally coupled hybrid
- **Engine**: 2012 Kawasaki KX250F
- **Fuel Type**: Gasoline
- **Generator**: N/A
- **Drive Motor**: Enstroj EMRAX 207
- **Accumulator**: 144V custom pack
- **Weight**: 550 lbs
- **Unique Features**: Wireless communication of sensor suite to mobile application

Team Data

School: Middle Tennessee State University
Team Name: MTSU Motorsports
Car Name: A+
Advisor: Dr. Saeed Foroudastan

Vehicle Specifications

- **Regen Braking**: No
- **Drive Configuration**: Hybrid in Progress—Electric Only
- **Engine**: N/A
- **Fuel Type**: N/A
- **Generator**: N/A
- **Drive Motor**: Custom wound 72V Allied Motion MR0210 Series brushes DC torque motor
- **Accumulator**: Maxwell 48V Ultracapacitor modules in series
- **Weight**: 375 lbs
- **Unique Features**: The custom DC motor is attached to the custom Torren differential to allow direct drive of the rear wheels. Carbon monocoque with carbon suspension.

Team Data

School: University of Waterloo
Team Name: Blue Fury
Car Name: wuFH2
Advisor: Dr. Amir Khajepour

Vehicle Specifications

- **Regen Braking**: No
- **Drive Configuration**: Parallel
- **Engine**: 2012 KTM 250 SXV, 35 hp
- **Fuel Type**: Gasoline
- **Generator**: N/A
- **Drive Motor**: Lynch Motor Company - LEM 200 D135
- **Accumulator**: A123 2253F Li-ion
- **Weight**: 661 lbs (350 kg)*
- **Unique Features**: Utilizes a CVT to increase performance from the electric motor

Team Data

School: University of Michigan
Team Name: Michigan Hybrid Racing
Car Name: MHR-14
Advisor: Heath Hoffmann

Vehicle Specifications

- **Regen Braking**: Front
- **Drive Configuration**: Road coupled parallel split all wheel drive
- **Engine**: 250cc Honda
- **Fuel Type**: Gasoline
- **Generator**: N/A
- **Drive Motor**: Two - Delphi 3-phase induction from GM BAS+, 15kW
- **Accumulator**: Two - Hitachi Li-ion batteries from BAS+ (Model HPB015-100)
- **Weight**: 680 lbs
- **Unique Features**: Four-wheel drive, independent electrically-powered front wheels, IC engine-powered rear wheels, dSPACE MicroAutoBox master controller

Team Data

School: Embry-Riddle Aeronautical University
Team Name: ERAU Motorsports
Car Name: Ampara
Advisor: Darris White

Vehicle Specifications

- **Regen Braking**: Regen braking through the rear drive motor
- **Drive Configuration**: Parallel
- **Engine**: 2012 KTM 250sx-f with a plenum and intake restrictor
- **Fuel Type**: EBS
- **Generator**: None
- **Drive Motor**: Custom wound 72V Allied Motion MR0210 Series brushes DC torque motor
- **Accumulator**: Maxwell 48V Ultracapacitor modules in series
- **Weight**: 375 lbs*
- **Unique Features**: The custom DC motor is attached to the custom Torren differential to allow direct drive of the rear wheels. Carbon monocoque with carbon suspension.
<table>
<thead>
<tr>
<th>Team Data</th>
<th>School</th>
<th>Team Name</th>
<th>Car Name</th>
<th>Advisor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Team Data</td>
<td>University of Idaho</td>
<td>Vandall Racing</td>
<td>EV13</td>
<td>Dr. Dan Cordon</td>
</tr>
<tr>
<td>Team Data</td>
<td>The University of Akron</td>
<td>Zip Racing EV</td>
<td>EV13</td>
<td>Dr. Richard J. Gross & Rick Neiner</td>
</tr>
<tr>
<td>Team Data</td>
<td>University of Vermont</td>
<td>Alternative Energy Racing Organization (AERO)</td>
<td>ClearSpeed</td>
<td>Jeff Frolik</td>
</tr>
<tr>
<td>Team Data</td>
<td>Illinois Institute of Technology</td>
<td>IIT Motorsports</td>
<td>TBD</td>
<td>Francisco Ruiz & Mahesh Krishnamurthy</td>
</tr>
<tr>
<td>Team Data</td>
<td>Princeton University</td>
<td>Princeton Racing Electric</td>
<td>TBD</td>
<td>TBD</td>
</tr>
<tr>
<td>Team Data</td>
<td>Dartmouth College</td>
<td>Dartmouth Formula Racing</td>
<td>TBD</td>
<td>TBD</td>
</tr>
<tr>
<td>Team Data</td>
<td>Carnegie Mellon University</td>
<td>Carnegie Mellon Racing</td>
<td>TBD</td>
<td>Prof. Satbir Singh</td>
</tr>
<tr>
<td>Team Data</td>
<td>Carnegie Mellon Racing</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
</tr>
<tr>
<td>Team Data</td>
<td>Princeton University</td>
<td>Princeton Racing Electric</td>
<td>TBD</td>
<td>TBD</td>
</tr>
</tbody>
</table>

Vehicle Specifications

<table>
<thead>
<tr>
<th>REGEN BRAKING</th>
<th>DRIVE CONFIGURATION</th>
<th>ENGINE</th>
<th>FUEL TYPE</th>
<th>GENERATOR</th>
<th>DRIVE MOTOR</th>
<th>ACCUMULATOR</th>
<th>WEIGHT</th>
<th>UNIQUE FEATURES</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>Electric Only</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>2x Agni 95R</td>
<td>LifePo4</td>
<td>375 lbs</td>
<td>Independent rear motors. Software differential. Traction and stability control. Touch-screen LCD. Carbon fibre bodywork.</td>
</tr>
<tr>
<td>Yes</td>
<td>Electric Only, bi-motor</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>2x Agni 95R</td>
<td>LiFePO4</td>
<td>500 lbs*</td>
<td>Traction control electronic differential.</td>
</tr>
<tr>
<td>Rear Only</td>
<td>Electric Only</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>2x Agni 95R</td>
<td>LiFePO4</td>
<td>500 lbs*</td>
<td>Traction control electronic differential.</td>
</tr>
<tr>
<td>No</td>
<td>Electric Only</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>2x Agni 95R</td>
<td>LiFePO4</td>
<td>500 lbs*</td>
<td>Traction control electronic differential.</td>
</tr>
</tbody>
</table>

* Estimated Value

<table>
<thead>
<tr>
<th>Team Data</th>
<th>School</th>
<th>Team Name</th>
<th>Car Name</th>
<th>Advisor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Team Data</td>
<td>Milwaukee School of Engineering</td>
<td>Mozzee Motorsports</td>
<td>TBD</td>
<td>Dr. Matthew Anderson</td>
</tr>
<tr>
<td>Team Data</td>
<td>Delhi Technological University</td>
<td>DTU Formula Hybrid</td>
<td>TBD</td>
<td>Dr. R. S. Walla</td>
</tr>
<tr>
<td>Team Data</td>
<td>Rensselaer Polytechnic Institute</td>
<td>Rensselaer Hybrid</td>
<td>TBD</td>
<td>Casey Goodwin</td>
</tr>
<tr>
<td>Team Data</td>
<td>Georgia Institute of Technology</td>
<td>HyTech Racing</td>
<td>TBD</td>
<td>Dr. Tom Fuller</td>
</tr>
<tr>
<td>Team Data</td>
<td>Atilim University</td>
<td>Devrim Hybrid Team</td>
<td>TBD</td>
<td>Prof. Dr. Ahmet Demir Bayka</td>
</tr>
<tr>
<td>Team Data</td>
<td>Ferris State University</td>
<td>FSU Formula Hybrid</td>
<td>TBD</td>
<td>Patrick English</td>
</tr>
<tr>
<td>Team Data</td>
<td>Delhi Technological University</td>
<td>DTU Formula Hybrid</td>
<td>TBD</td>
<td>Dr. R. S. Walla</td>
</tr>
<tr>
<td>Team Data</td>
<td>Rensselaer Polytechnic Institute</td>
<td>Rensselaer Hybrid</td>
<td>TBD</td>
<td>Casey Goodwin</td>
</tr>
<tr>
<td>Team Data</td>
<td>Georgia Institute of Technology</td>
<td>HyTech Racing</td>
<td>TBD</td>
<td>Dr. Tom Fuller</td>
</tr>
</tbody>
</table>

Vehicle Specifications

Team Data

<table>
<thead>
<tr>
<th>REGEN BRAKING</th>
<th>DRIVE CONFIGURATION</th>
<th>ENGINE</th>
<th>FUEL TYPE</th>
<th>GENERATOR</th>
<th>DRIVE MOTOR</th>
<th>ACCUMULATOR</th>
<th>WEIGHT</th>
<th>UNIQUE FEATURES</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>Parallel</td>
<td>2011 Honda CBR 250R</td>
<td>Gasoline</td>
<td>N/A</td>
<td>AgiO 95R</td>
<td>Li-phosphate - LiFePO4 - LFP 40Ah</td>
<td>~650 lbs</td>
<td>Removable tractive system accumulator container</td>
</tr>
</tbody>
</table>

Team Data

<table>
<thead>
<tr>
<th>REGEN BRAKING</th>
<th>DRIVE CONFIGURATION</th>
<th>ENGINE</th>
<th>FUEL TYPE</th>
<th>GENERATOR</th>
<th>DRIVE MOTOR</th>
<th>ACCUMULATOR</th>
<th>WEIGHT</th>
<th>UNIQUE FEATURES</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>Series</td>
<td>Subaru EX21 Carbureted, 211cc (7HP)</td>
<td>Gasoline</td>
<td>Perm PMG-132 (24-72V)</td>
<td>Permanent magnet motors</td>
<td>Batteries. Shorai Inc. LFX24L3-BS12. 288W per battery. 12 such batteries used. Total pack capacity: 3.456kW</td>
<td>~650 lbs</td>
<td></td>
</tr>
</tbody>
</table>

Team Data

<table>
<thead>
<tr>
<th>REGEN BRAKING</th>
<th>DRIVE CONFIGURATION</th>
<th>ENGINE</th>
<th>FUEL TYPE</th>
<th>GENERATOR</th>
<th>DRIVE MOTOR</th>
<th>ACCUMULATOR</th>
<th>WEIGHT</th>
<th>UNIQUE FEATURES</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>Series</td>
<td>2011 Honda CBR 250R</td>
<td>Gasoline</td>
<td>N/A</td>
<td>AgiO 95R</td>
<td>Li-phosphate - LiFePO4 - LFP 40Ah</td>
<td>~650 lbs</td>
<td>Removable tractive system accumulator container</td>
</tr>
</tbody>
</table>

Team Data

<table>
<thead>
<tr>
<th>REGEN BRAKING</th>
<th>DRIVE CONFIGURATION</th>
<th>ENGINE</th>
<th>FUEL TYPE</th>
<th>GENERATOR</th>
<th>DRIVE MOTOR</th>
<th>ACCUMULATOR</th>
<th>WEIGHT</th>
<th>UNIQUE FEATURES</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>Series</td>
<td>Shorai Inc. LFX24L3-BS12. 288W per battery. 12 such batteries used. Total pack capacity: 3.456kW</td>
<td>Gasoline</td>
<td>N/A</td>
<td>AgiO 95R</td>
<td>Li-phosphate - LiFePO4 - LFP 40Ah</td>
<td>~650 lbs</td>
<td>Removable tractive system accumulator container</td>
</tr>
</tbody>
</table>

Team Data

<table>
<thead>
<tr>
<th>REGEN BRAKING</th>
<th>DRIVE CONFIGURATION</th>
<th>ENGINE</th>
<th>FUEL TYPE</th>
<th>GENERATOR</th>
<th>DRIVE MOTOR</th>
<th>ACCUMULATOR</th>
<th>WEIGHT</th>
<th>UNIQUE FEATURES</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>Series</td>
<td>Yamaha YBR 250</td>
<td>Gasoline</td>
<td>N/A</td>
<td>PMDC. Agnimotors. 95R series.</td>
<td>Batteries. Shorai Inc. LFX24L3-BS12. 288W per battery. 12 such batteries used. Total pack capacity: 3.456kW</td>
<td>~650 lbs</td>
<td>Removable tractive system accumulator container</td>
</tr>
</tbody>
</table>

Team Data

<table>
<thead>
<tr>
<th>REGEN BRAKING</th>
<th>DRIVE CONFIGURATION</th>
<th>ENGINE</th>
<th>FUEL TYPE</th>
<th>GENERATOR</th>
<th>DRIVE MOTOR</th>
<th>ACCUMULATOR</th>
<th>WEIGHT</th>
<th>UNIQUE FEATURES</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>Series</td>
<td>Yamaha YBR 250</td>
<td>Gasoline</td>
<td>N/A</td>
<td>PMDC. Agnimotors. 95R series.</td>
<td>Batteries. Shorai Inc. LFX24L3-BS12. 288W per battery. 12 such batteries used. Total pack capacity: 3.456kW</td>
<td>~650 lbs</td>
<td>Removable tractive system accumulator container</td>
</tr>
</tbody>
</table>

Team Data

<table>
<thead>
<tr>
<th>REGEN BRAKING</th>
<th>DRIVE CONFIGURATION</th>
<th>ENGINE</th>
<th>FUEL TYPE</th>
<th>GENERATOR</th>
<th>DRIVE MOTOR</th>
<th>ACCUMULATOR</th>
<th>WEIGHT</th>
<th>UNIQUE FEATURES</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>Series</td>
<td>Yamaha YBR 250</td>
<td>Gasoline</td>
<td>N/A</td>
<td>PMDC. Agnimotors. 95R series.</td>
<td>Batteries. Shorai Inc. LFX24L3-BS12. 288W per battery. 12 such batteries used. Total pack capacity: 3.456kW</td>
<td>~650 lbs</td>
<td>Removable tractive system accumulator container</td>
</tr>
</tbody>
</table>
Building a great career is like building great vehicles. So many opportunities to develop hybrid vehicles. Consider doing it with us. Visit us at: chryslercareers.com
HIT THE GROUND RUNNING.

There is a movement happening at GM — one that requires hard work, determination, and a unified vision that embraces new ideas, fresh thinking and working collaboratively.

We need your engineering talent and passion to be an integral part of this progression. Through our internship, co-op and entry-level positions, outstanding students like you have the opportunity to make a difference from day one. That means your ideas can contribute to what’s next, now — and your ambition can propel us toward the future. Test your talent at GM and discover what our employees already know — that together, there’s no stopping us.

GM 2014. The policy of General Motors is to extend opportunities to qualified applicants and employees on an equal basis regardless of an individual’s age, race, color, sex, religion, national origin, disability, sexual orientation, gender identity expression or veteran status.

WWW.CAREERS.GM.COM

Electric Safety for Electric Vehicles.

The BENDER IR155 module is the premier device for ensuring your vehicle is free of both AC and DC ground faults. Multiple outputs and automotive rated connectors make interfacing simple.

Visit us online to learn more.

800.356.4266 www.bender.org
For more than a hundred years now, there’s been no such thing as “good enough” at Ford Motor Company. We set, and hold ourselves to, a higher standard. We demand more than just quality from our products – and from the people who build them too.

Ford is a place where skilled and motivated teams create inspired products that actually make a better world. If that sounds extraordinary to you, you may have just reached the end of your career search. Now, we invite you to Go Further.

Electrified Propulsion Engineers - Electrical, Mechanical, Chemical

The distance between you and an amazing career has never been shorter. Join the Ford team today, and discover the benefits, rewards and development opportunities you’d expect from a diverse global leader.

Connect with us and be part of the growing Ford community at
Facebook.com/FordMotorCompanyCareers
twitter.com/FordCareers
www.linkedin.com/company/ford-motor-company
www.careers.ford.com

Supporting the future of Engineering, Science and Innovation.
Acknowledgements

Our Sponsors

We would like to take this opportunity to thank our sponsors. We greatly appreciate all of their contributions and support and believe that the event was made all the better due to their help. Thanks again!

TECHNICAL INSPECTORS / MECHANICAL
Michael Royce, Albion Associates LLC
Doug Van Citters, Ph.D., Assistant Professor, Thayer School of Engineering
Matt Carson, Automation Engineer, i-Automation
Craig Czapinski, Senior Hybrid Powertrains Engineer, Navistar
Jay Dao, Crew Chief, Mullen Management Inc.
Allie Roych, Fuel Monster
Dave Hyman, New England Region, SCCA
Benjamin Gown, HEV Battery Engineer, General Motors
Stephen Gross, General Motors
Rick Hilland, Ric Racing & Motorsports Engineering
Scott Lananna, Engineer, General Motors
Russ O’Blens, Engineering Group Manager, General Motors
Suzanne Royce, Principal, Albion Associates
Dave Schaller, President, Schaller Engineering
David Williams, Documentation Engineer, ARSYS

TECHNICAL INSPECTORS / ELECTRICAL
Dr. Rob Wells, P.E., Intregal, LLC
David Arthur, P.E., DTE
Dennis Brown, Engineering Group Manager, Hybrid Vehicle Integration, General Motors
Nathalie Caputi, Test Engineer, General Motors
Chris Farmer, Electrical Hardware Engineer, Innovative Dynamics, Inc.
Pascal-André Fortin, Testa Motors
Health Hoffman, Professor, University of Michigan
Paul Mesier, Principal Electrical Engineer, BAE Advanced Systems
Carrie Olma, Research Engineer, Chrysler
Jenna Rebollick, Ph.D., Senior Electrical Design Engineer, Tesla Motors
Matt Prater, Senior Counsel, SABIC
Charles Sullivan, Professor, Thayer School of Engineering
Joe Thompson, Michigan Technical University
Richard Wiese, Senior Project Engineer, General Motors
Eric Weber, Senior Systems Engineer, AQUION Energy

SUMMARY RULERS COMMITTEE
Dr. Rob Wells, P.E., Intregal, LLC
Dave Schaller, P.E., President, Schaller Engineering
Don Bocci, Electrical Engineer, Copia Advanced Solutions, Inc.
Chris Farmer, Electronics Hardware Engineer, Innovative Dynamics, Inc.
Doug Fraser, P.E., Thayer School of Engineering
Don Gobelle, Mechanical Engineer
Heath Hoffman, Professor, University of Michigan
Amy Keesler, Coordinating Manager, Formula Hybrid
Kristen MacCartney, University Partnership Program Manager, IEEE
Jay McElmury, Michigan Technical University
Jenna Pollock, Ph.D., Sr. Electrical Design Engineer, Tesla Motors
Michael Royce, Albion Associates LLC
Charles Sullivan, Professor, Thayer School of Engineering
Doug Van Citters, Ph.D., Assistant Professor, Thayer School of Engineering
Boe Winder, Director, Energy & Environmental Research Group, Toyota Motor North America
Darius White, Ph.D., Professor, Embry-Riddle Aeronautical University
Kaley Zundel, SAE Collegiate Programs Manager, SAE International

SPECIAL THANKS TO:
Phi Benjamin, Platform Manager, Chrysler
Alka Colon, Program Manager, NASA
Sprint Cup Series, General Motors
Joseph Hobbs, Dean and Professor of Engineering, Thayer School of Engineering
Tara Rahmanifar, SMT CEE Business Manager, Engineering, Thayer School of Engineering
Joseph Helble, Dean and Professor of Engineering, Thayer School of Engineering
Doug Fraser, P.E., Thayer School of Engineering
Don Gobelle, Mechanical Engineer
Heath Hoffman, Professor, University of Michigan
Amy Keesler, Coordinating Manager, Formula Hybrid
Kristen MacCartney, University Partnership Program Manager, IEEE
Jay McElmury, Michigan Technical University
Jenna Pollock, Ph.D., Sr. Electrical Design Engineer, Tesla Motors
Michael Royce, Albion Associates LLC
Charles Sullivan, Professor, Thayer School of Engineering
Doug Van Citters, Ph.D., Assistant Professor, Thayer School of Engineering
Boe Winder, Director, Energy & Environmental Research Group, Toyota Motor North America
Darius White, Ph.D., Professor, Embry-Riddle Aeronautical University
Kaley Zundel, SAE Collegiate Programs Manager, SAE International

Our Sponsors

We would like to take this opportunity to thank our sponsors. We greatly appreciate all of their contributions and support and believe that the event was made all the better due to their help. Thanks again!

Our Sponsors

We would like to take this opportunity to thank our sponsors. We greatly appreciate all of their contributions and support and believe that the event was made all the better due to their help. Thanks again!

Our Sponsors

We would like to take this opportunity to thank our sponsors. We greatly appreciate all of their contributions and support and believe that the event was made all the better due to their help. Thanks again!

Our Sponsors

We would like to take this opportunity to thank our sponsors. We greatly appreciate all of their contributions and support and believe that the event was made all the better due to their help. Thanks again!